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Abstract
In its longest drought in four decades, Somalia and other
countries in the Horn of Africa are currently facing an un-
precedented humanitarian crisis. 40% of the Somali popu-
lation (six million people) are estimated to be impacted by
severe acute food insecurity (WFP 2022c). The United Na-
tions Office for the Coordination of Humanitarian Affairs
(UN OCHA) has released additional funds for humanitarian
aid in the region based on predictive analytics of its novel An-
ticipatory Action (AA) Team. Releasing “trigger warnings”
when food insecurity levels are predicted to reach critical lev-
els, AA employs data from partners that leverages manual
and qualitative methods for food insecurity classification and
prediction. The frequency of food insecurity prediction is 2-4
times per year making any subsequent modelling ill-equipped
to account for the dynamic nature of natural catastrophes and
conflicts. Additionally, the prediction accuracy has been sub-
ject to scrutiny. In this paper, we describe an AI-based ap-
proach that can automate this system and more accurately
forecast levels of hunger in real-time. We hope that our results
serve as a foundation for the use of AI in humanitarian relief
and lead to more targeted aid for vulnerable populations.

Introduction
Despite the world’s steadily increasing per capita food pro-
duction, food insecurity remains an unsolved problem af-
fecting the lives of more than 700 million people worldwide
(Nations 2022; FAO 2022). Facing both anthropogenic cli-
mate change and worsening conflict, the Horn of Africa is
facing its worst humanitarian crisis in forty years, putting
millions at risk of famine and undernourishment.

To make humanitarian assistance faster, more efficient,
and more dignified, the United Nations Office for the Coor-
dination of Humanitarian Affairs (UN OCHA) has launched
an Anticipatory Actions (AA) team that is attempting to pre-
dict food insecurity and reduce its detrimental impact by in-
tervening earlier than common, post-facto humanitarian as-
sistance. This has the potential to improve UN OCHA’s re-
sponse to crises but is limited by several constraints. First,
lack of funding has forced the United Nations Secretariate
and its agencies to make difficult decisions about the distri-
bution of its limited budget. Second, there is currently lit-
tle political support for a more quantitative approach to the
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dissemination of humanitarian aid. As a result, current ef-
forts rely on simplistic statistical decision-making and time-
consuming, manual prediction processes.

So far, prediction of food security has relied on target la-
bels derived from these slow and subjective processes, al-
lowing teams like AA to only update their trigger algorithms
2-4 times per year. In contrast, we have designed models us-
ing the latest machine learning techniques to predict food
insecurity levels more accurately and in real-time. In this
paper, we use Somalia as a case study and describe the out-
comes of our modeling and results. We argue that predic-
tions from our models have the potential to help AA and
other organizations achieve their goals of a more rapid, effi-
cient, and fair distribution of humanitarian assistance.

Related Work
Integrated Food and Security Phase Classification
(IPC) Ratings
The Integrated Food and Security Phase Classification (IPC)
is a rating scale that categorizes food insecurity and famine
risk for a given region (Scicchitano 2019). It is a five-point
scale where 1 denotes a secure region and 5 denotes a
famine-affected region.

The organization that determines IPC levels for regions
does so in a manual and somewhat subjective process. This
is evident in a report of the organization’s Advanced Tech-
nology and Artificial Intelligence (ATARI) initiative stating
“that current IPC processes—while well established and de-
veloped over the past 17 years—have not caught up to the
technological possibilities that currently exist or will exist
in the near future” (ATARI Initiative 2021). To that end, the
initiative’s report goes on to state that capabilities for fore-
casting and nowcasting (using predictive models to impute
data missing in the present) food (in)security and indicators
of food (in)security to calculate IPC values would be highly
complex but also would have high impact (ATARI Initiative
2021).

UN OCHA Anticipatory Action
The United Nations Office for the Coordination of Human-
itarian Affairs (UN OCHA) is one downstream organiza-
tion that uses inputs like IPC and other indicators of crisis



or famine to deliver aid to affected regions. A new frame-
work, anticipatory action (AA), was recently tested in So-
malia (Gettliffe 2021). The framework relies on a system
of triggers that is activated once food insecurity reaches a
certain level, at which point the trigger “releases money to
activate the required delivery mechanisms and actions” for
aid (Gettliffe 2021). The pilot ran into numerous difficul-
ties, including but not limited to the lack of “frequency and
timing of food security projections”, but nevertheless, the
overall response from the participants was positive and in-
cluded “a sense that the traditional modes of humanitarian
response are outdated, given the predictable and recurrent
nature of so many shocks, and the greater efficiency (in fi-
nancial terms) and human dignity of responding in anticipa-
tory ways” (Gettliffe 2021).

These issues and others from the ATARI report are echoed
in Lentz and Maxwell (2022). Lentz and Maxwell describe
six challenges of information-driven anticipatory action. All
of these challenges demonstrate that while data about food
insecurity and relevant indicators exists, it can be difficult to
obtain and make sense of this data, let alone actually make
meaningful, accurate, and objective predictions about things
like war or famine (Lentz and Maxwell 2022).

Existing Predictive Modeling Approaches
Despite all of these difficulties, various teams and re-
searchers over the years have attempted to model and predict
food insecurity. The Famine Early Warning Systems Net-
work (FEWS NET) is widely regarded as a leading resource
for food insecurity data especially for Sub-Saharan Africa
(Backer and Billing 2021). An analysis of their released pre-
dictions compared to ground-truth actual numbers over the
past decade for African countries revealed that their accu-
racy was approximately 84% (Backer and Billing 2021).

FEWS NET’s process is manual, but other approaches
employ statistical modeling and machine learning with the
goal of eventually automating parts of such processes and
making forecasts more readily available. One such project
uses autocorrelation to make “one-ahead forecasts” given
previous levels of food insecurity and relevant indicators
(Wang et al. 2020). Minor modifications to their model to in-
corporate Bayesian priors allowed them to take expert opin-
ion into account when calculating most likely model param-
eters.

Andree et al. (2020) provide multi-level forecasting and
prediction. The sub-national prediction focuses on monthly
predictions and evaluates associated costs with different
weighting strategies for false positives to false negatives.
The second level of prediction is focused on individual coun-
tries and focuses on the percentage of population impacted
in the crisis affected districts of the country. They also use
food insecurity data from FEWS NET dataset. On top of
food crisis outbreak prediction, the authors also predict other
food insecurity correlated indicators like violent conflicts,
environmental factors, food price inflation et cetera. Their
output variable is a binary variable with value 1 indicating
food crisis (IPC 3,4,5) or 0 if not observed. They use the
random forests technique for prediction and outperform the
baseline methods which are conservative and have a high

false negative ratio. Their method also allows them to differ-
entiate impact of specific intervention techniques and pro-
vide long horizon future predictions (12 months) which in-
crease the lead time for preventative action.

Zhou et al. (2021) compares tree-based methods
(gradient-boosted trees and random forests) to logistic re-
gression results on two binary prediction problems for out-
comes 1 month ahead at the village level. The first involved
predicting whether 20% of the village was food insecure
(roughly corresponding to IPC levels of 3 or greater), and
the second involved predicting whether the average house-
hold was food insecure (roughly corresponding to IPC level
5). Testing results on data from three African countries
(Malawi, Tanzania, and Uganda) revealed that the tree-based
approaches outperformed logistic regression (even more so
when using upsampling techniques for the second prediction
problem) but noted in their discussion and conclusion that
their methods are brittle in the face of “conflict and unantic-
ipated disasters” (Zhou et al. 2021).

Westerveld et al. (2021) also uses data from a variety of
different sources with gradient-boosted trees to predict IPC
for areas of Ethiopia. They found that their model worked
better for longer time horizons (7 months) than shorter ones
(3 months) but generally outperformed baseline classifiers).

Lastly, the “Hunger Map” by the World Food Programme
(WFP 2022b) is a project to map food insecurity in real time.
Most of the data displayed in the interactive map is obtained
from phone interviews, and they impute missing data via
“nowcasting” based on outputs from gradient-boosted tree
models (WFP 2022b).

Methods
Data
Choosing Somalia as our case study, we have faced two
challenges in the collection of data. First, panel data for the
74 subregions of Somalia is scarce given its limited digi-
tal infrastructure. Second, food insecurity cannot be solely
attributed to one source but is an interaction between eco-
nomic, natural, and conflict factors (Appendix, Table 4).

In our supervised models, our categorical target variable
was the IPC level of the 74 subregions of Somalia, classified
retrospectively by FEWS NET quarterly from July 2009 to
October 2020 (NET 2022). Each classification was associ-
ated with a near-term and medium-term prediction of the
IPC level in the respective region at the time. These predic-
tions helped us calculate FEWS NET prediction accuracy in
Somalia as a baseline for our models.

For the features of our model, we used conflict, de-
mographic, socio-economic, geographic, and weather data.
Conflict data was obtained from the non-governmental or-
ganization ACLED (The Armed Conflict Location & Event
Data Project) that monitors conflicts in every country in
the world. ACLED’s accuracy and reliability of their data
has been confirmed in numerous studies and peer review
(ACLED 2017). Conflict events (e.g., violence against civil-
ians, protests, battles) were aggregated for each quarter and
subregion of Somalia and merged with the IPC classification
of the respective subregion at the end of the time period. All



values were divided by the number of inhabitants in the re-
gion to account for varying sizes of regions.

We added weather data that we received from our collab-
oration with UN OCHA’s Anticipatory Actions team. The
variables were aggregated to show the monthly absolute pre-
cipitation as well as relative rainfall compared to historical
seasonal average.

From the World Food Programme, we obtained the aver-
age price of corn in dozens of monitored markets across So-
malia. We feature engineered the data and added the average
price of corn at the two closest markets to each observation
(WFP 2022a).

As demographic and socio-economic predictors, we used
data from the World Bank. The data included 1,443 vari-
ables with yearly observations for all of Somalia. We added
the most relevant features to our existing dataset: Unemploy-
ment and child labour rates, exports, urban growth, rural wa-
ter access, and public debt (World Bank 2022). Addition-
ally, we obtained real-time currency exchange information
of the Somali shilling versus US Dollar. In a feature engi-
neering step, we used this data to construct the following
variables: average exchange rate, minimum/maximum ex-
change rate, change within quarter, and volatility (difference
between maximum and minimum) (Investing 2022).

To control for regional and temporal fixed effects, we in-
cluded geographical variables and a time variable as well as
the last IPC classification for the respective region.

Models
We trained and evaluated several different classification
models in their ability to predict ground-truth IPC classifi-
cation three months in the future for a region of Somalia.
While one can apply time series models to this problem (as
others like Wang et al. (2020) have done), we did not con-
sider them in our experiments. Analyzing the data prior to
modeling to produce plots like Figure 1 reveals that at least
in the case of Somalia, IPC typically does not have a sea-
sonal pattern that time series models can utilize to generate
useful predictions. On the contrary, it varies wildly across
some periods and is stable across others.

As a result of this phenomenon and our limited data, we
did not experiment with models that explicitly account for
lagged features or autocorrelation in their construction (as
methods like ARIMA or recurrent neural networks do), but
because prior IPC classifications are still correlated with fu-
ture ones, we did utilize the last IPC value as an input feature
alongside data reflecting the current state of the region to
predict IPC in the future. Thus, our prediction problem en-
tailed predicting future IPC given present data and implicitly
lagged labels.

To explore this problem, we considered multiclass ver-
sions of random forests, gradient-boosted trees, support vec-
tor machines, gaussian processes, and shallow feedforward
neural networks. During training, we also performed upsam-
pling or sample weighting for some models to adjust for
class imbalance issues in our dataset given that IPC levels
of 1 and 4 are rare (and we never observe an IPC level of 5
in our data). We tuned hyperparameters and class imbalance
mitigation for all models via 5 trials of temporal holdout

Figure 1: IPC versus Time (in quarters since July 1st, 2009)
for several regions of Somalia. IPC lacks seasonal patterns
and is sometimes stable from one quarter to the next. We opt
against using time series models for these reasons.

validation. As baseline models, we additionally considered
dummy models that predict based on the most frequently
occurring label in the training set, human predictions from
FEWS NET, and random forests that do not use the last IPC
value as input (inspired by Andree et al. (2020)). We tuned
the hyperparameters and imbalance mitigation scheme of the
latter random forests baseline model also via temporal hold-
out validation. We also performed a gridsearch over various
hyperparameter configurations for random forests.

We used Keras (Chollet et al. 2018) with TensorFlow
(Abadi et al. 2016) for neural networks, XGBoost (Chen and
Guestrin 2016) for gradient-boosted trees, scikit-learn (Pe-
dregosa et al. 2011) for all other models, and imbalanced-
learn (Lemaı̂tre, Nogueira, and Aridas 2017) for upsam-
pling. Hyperparameter values and class imbalance mitiga-
tion strategies for each model explored during their respec-
tive grid searches are shown in Table 3 located in our Ap-
pendix.

Results
For each trial of temporal holdout validation, we evaluated
the accuracy of the best models on holdout test data and
averaged the results. Table 1 displays these accuracy val-
ues alongside the majority class baseline and human perfor-
mance from FEWS NET.

While the random forests baseline inspired by Andree
et al. (2020) performs well, it is outperformed by gradient-
boosted trees with sample weighting on the first holdout test
set and a shallow neural network on the second. Moreover,
these models produce better predictions than those of FEWS
NET in the medium-term and long-term for the same time
periods.

However, our models, baselines, and human performance
alike suffer significantly on the October ’20 test set relative
to the August ’20 test set. This drop in accuracy across all
approaches suggests a temporal domain shift that is difficult
to handle.



Model Imb Mit Aug ’20 Oct ’20
RF Baseline Rand. Oversampling 0.97 0.56
NN N/A 0.81 0.58
GBT Sample Weighting 0.99 0.52
SVM N/A 0.73 0.55
RF w/IPC N/A 0.58 0.52
Maj. Class N/A 0.69 0.58
GP N/A 0.97 0.55
FEWS NET N/A 0.92* 0.54**

Table 1: Models with class imbalance mitigation schemes
and performance on holdout test sets of the best models. The
drop in performance from Aug ’20 to Oct ’20 suggests tem-
poral domain shift.
*: short-term prediction in June 2020
**: medium-term prediction in June 2020

Since this is a multiclass classification problem, we pri-
marily considered accuracy because it is difficult if not im-
possible to use evaluation metrics more suited for binary
classification and because accuracy captures prediction cor-
rectness over all classes. That being said, we also calculated
average confusion matrices pertaining to our two best per-
forming models and display the results in Table 2.

Model Conf. Mat. Aug ’20 Conf. Mat. Oct ’20

NN

6.8 0.8 0 0.4
0 46.6 0.4 1
0 8.2 0.8 0
0 0 0 0

12.6 2.4 0 0
2.2 23.8 4.4 0.6
1 19.8 0.2 0
0 0 0 0

GBT

10 0 0 0
0 47 1 0
0 0 9 0
0 0 0 0

10 4 1 0
0 24 7 0
0 20 1 0
0 0 0 0

Table 2: Confusion matrices with results from the two best
models from Table 1 with bolded terms denoting numbers of
correctly predicted examples. They suggest that it is hardest
to distinguish between IPC classes 2 and 3.

The drop in performance that can be attributed to temporal
domain shift can also be seen here in the increase in number
of misclassified examples from one test set to the other. In
addition, given that the shallow neural network has issues
distinguishing between IPC classes 2 and 3 in both test sets
and the decrease in accuracy for the gradient-boosted tree
largely comes from failing to distinguish between those two
classes, these results also imply that IPC classes 2 and 3 are
inherently difficult to separate.

Discussion
Modeling Difficulties Forecasting is generally a challeng-
ing problem, and our efforts are further limited by the lack of
data available. We posit that our models are unable to adapt
to the new temporal domain due to this lack of data. Class
imbalance also made this problem complex, and imbalance
mitigation strategies did not work uniformly across model-
ing approaches (e.g. random oversampling worked best for

the random forests baseline but sample weighting worked
best for gradient-boosted trees).

Modeling Uncertainty While limited data and class im-
balance negatively impact all of our models, some of them
are still able to model the uncertainty in their predictions.
Specifically, gaussian processes and neural networks output
probability distributions over all classes instead of hard la-
bels instead of fractions of classes at leaf nodes as tree-based
approaches do. These probability distributions can be inter-
preted as uncertainty in predictions and help humans with
aid prescription and decision-making. Moreover, in the case
of gaussian processes, kernel crafting and prior configura-
tion could be used to factor human expertise into the model-
ing process as per Wang et al. (2020).

Ethical Considerations We realize these models have
ethical and real-world implications. Our models have dif-
ficulty distinguishing between IPC levels of 2 and 3, and
while this is a pitfall from a modeling perspective, such er-
rors could make the difference between a region receiving
or not receiving aid. More generally, modeling predictions
can affect the livelihood of millions of people, especially if
these models are used for numerous countries. These predic-
tions therefore should be free from as much human bias and
error as possible, but this is beyond the scope of our work.
If there is a desire to deploy these models, the deployment
should be done in collaboration with human experts and rel-
evant stakeholders who have the ability to halt the process if
they are uncomfortable with these implications.

Future Work An important next step to continue this re-
search is to improve our modeling approaches, primarily by
obtaining more data. Our data only went back as far as July
of 2009, which does not translate into many quarters to use
for data-hungry modeling algorithms. Using data from other
countries or even digitizing hard-copy archives of historic
data from NGOs could be viable solutions in this regard.
Additionally, more informed application of class imbalance
mitigation strategies would also be helpful going forward.
Lastly, working alongside NGOs to develop aid allocation
strategies given modeling results and ensuring that the mod-
eling outcomes are in-line with human values are also im-
portant remaining tasks.

Conclusion In this paper, we have presented a new
method to derive predictions for food insecurity. If imple-
mented by international humanitarian aid organizations, it
can make humanitarian assistance more rapid, efficient, and
more equitably distributed. Building upon existing methods,
we showed that automated processes can have higher accu-
racy than FEWS NET’s manual predictions. Importantly, it
allows for daily if not hourly predictions of food insecurity
and thereby offers a significant advantage over bi-annual to
quarterly predictions that may be published too late for trig-
ger warnings. We conclude that there is significant potential
for machine learning to have a positive impact on the field
of humanitarian assistance.
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Appendix

Model Hyperparams Imb. Mit.
RF Baseline Models in Andree et al.

(2020)
None
Rand. Over-
sampling

RF w/IPC Models in Andree et al.
(2020)

None
Rand. Over-
sampling

GP None
SVM Kernel: Linear, RBF

C: {1e-7,1e-6,1e-5,
1e-4,1e-3,1e-2,1e-1,1}

None
Rand. Over-
sampling

GBT max depth: i in range [3,
11]

None
sample
weighting
Rand. Over-
sampling

NN Structure: {[128, 64, 32,
16, 4]}
Activation: ReLU and
softmax

None
class
weight-
ing
Rand. Over-
sampling

Table 3: Hyperparameter values and class imbalance mitiga-
tion strategies used during grid search for optimal models.



Variables d Region-varying Description
IPC level 1 yes Dependent variable; post facto IPC classification by FEWS

NET
Last IPC 1 yes The last observed IPC value for the subregion
Dummies 89 yes Two OHE vectors of 18 regions and 73 subregions of Somalia
Time fixed effects 1 no time variable, one observation per 3-5 months
Spatial fixed effects 2 yes Latitude and longitude of region
Population 1 yes Population of region
Weather 5 yes Precipitation data: absolute and relative to seasonal norm; mean,

maximum and minimum
Economic 8 no Unemployment rates (male and female), child labour (male and

female), exports, urban growth, rural water access, public debt;
all variables are yearly

Food prices 1 yes Average price of corn at the two closest recorded markets (in
Somali Shilling)

Exchange rate 5 no Exchange rate of Somali Shilling to US Dollar; absolute and
change, quarterly maximum and minimum

Conflict data 8 yes Fatalities in conflict, battles, explosions, protests, riots, strategic
developments, violence against civilians; per capita

Table 4: Dependent and independent variables


