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Abstract
AI-driven planning has greatly expanded the scope of autonomy, transforming how

robots perceive, reason, and act in complex environments. Foundation models trained
on Internet-scale multimodal data have been a key driver behind this boost in auton-
omy. However, deploying existing models and techniques in safety-critical applica-
tions remains challenging due to the lack of a structured methodology to enforce strict
behavioral and safety requirements. These constraints are essential for reliable opera-
tion in dynamic, real-world settings.

Historically, formal specifications, particularly linear temporal logic (LTL) and
signal temporal logic (STL), have been used to encode safety and mission rules for
robotics. Although recent work has integrated such logics into learning-based frame-
works, they are poorly aligned with modern pre-training-based paradigms that under-
pin robot foundation models. Several theoretical and practical challenges must be
overcome before these methods can be widely adopted.

My thesis work explores the integration of temporal logic specifications for mod-
ern AI-driven planning. It introduces methods to (1) decompose and efficiently eval-
uate complex STL specifications using modern auto-differentiation frameworks, (2)
generalize specification design via Embedding Temporal Logic (ETL), which defines
predicates over learned representations instead of explicit states, and (3) enforce STL
specifications at inference time using SafeDec, a constrained decoding approach in-
spired by structured generation in large language models. Together, these contribu-
tions enable formal specification-driven planning in AI systems, ensuring safety in
robotics and autonomous systems.
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Chapter 1

Introduction

Artificial intelligence (AI)-driven planning has revolutionized robotics and autonomous decision-
making in the past decade. A large part of this revolution has been due to advances in foundation
models and world models that have significantly expanded the scope of autonomy. A wide variety
of robot form factors can now perform increasingly complex tasks across diverse environments due
to these foundation models [30]. These models trained on Internet-scale data pose superior gener-
alization and semantic reasoning abilities, and these large models are increasingly being integrated
into all parts of the robotic stack for perception, planning, and control.

Despite these successes, ensuring adherence to strict behavioral and safety requirements for
large data-driven models remains an open problem. Although these neural models can adeptly
process perception input and follow natural language commands to generate robot commands,
they lack explicit mechanisms to enforce logical constraints. These logical constraints are crucial
for the deployment of these models in safety-critical applications. As a result, current models
can produce unsafe behavior, especially in open-world deployments where formal guarantees are
necessary.

In safety-critical robotics and control applications, the need for such guarantees has histori-
cally been addressed through formal specifications. Formal specifications have long been used
to specify operational rules, such as safety requirements or mission directives for robotic deploy-
ments [29, 74]. Specifically, temporal logics such as linear temporal logic (LTL) [77] and signal
temporal logic (STL) [69] provide a mathematically precise way to encode desired robotic behav-
ior. Designers can write temporal logic specifications that are defined over system traces (e.g., state
trajectories), and these specifications are used for safe planning. STL has seen particular interest
due to its quantitative measure of satisfaction [28]. Recent work has explored integrating these
logics into learning-based frameworks [37, 72, 87], but they have yet to catch up with the modern
paradigms driving pretraining-based decision-making in robot learning.

My work explores the integration of temporal logic specifications for modern AI-driven plan-
ning. The goal is to extend existing temporal logic frameworks to ensure safety-aware planning
while being integrated with modern deep learning-based behavior generation.
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1.1 Challenges
Despite prior work [72, 87, 96] in employing temporal logics for specification-satisfying planning
as a way to ensure safety in robotics, several theoretical and practical challenges remain before
such methods can be widely adopted. Here, I elaborate on three main challenges identified by
prior work and propose techniques to address them.

Challenge 1: Efficiency There are two key efficiency challenges with existing STL specifica-
tion mechanisms. First, STL admits nesting temporal operators that can, in turn, encode complex
temporally extended goals [8]. Although these specifications can capture complex temporal behav-
ior, planning from these specifications is computationally expensive and sometimes infeasible. For
example, a common approach for planning from STL specifications, originally proposed in [80],
involves encoding the STL specification and the system dynamics as Mixed Integer Program (MIP)
constraints and solving the constrained optimization problem in a receding horizon fashion. MIP-
based STL planners scale with the number of binary variables [58]. As the temporal operator
nesting increases, the number of binary variables increases exponentially. Hence, while the rich
semantics of STL allow expressing long-horizon complex goals by nesting temporal operators,
their corresponding MIPs can be computationally inefficient. We call this the ”depth” challenge.

Second, evaluating STL’s quantitative measure of satisfaction [28] for a large number of tra-
jectories can be prohibitively slow. This inefficiency arises from the recursive nature of STL ro-
bustness evaluation. The semantics of temporal operators such as G (globally), F (eventually), and
U (until) require aggregating robustness values across multiple timesteps, where each computation
depends on the results of previous timesteps. As a result, robustness must be evaluated sequen-
tially along the trajectory, preventing parallelization over the time axis. Due to these sequential
dependencies, computational overhead for evaluating robustness for long-horizon trajectories or a
large batch of trajectories can be significantly high. This problem is exacerbated for STL formulas
with nested temporal operators. Hence, large-scale applications that rely on robustness computa-
tion face a fundamental recursion bottleneck, limiting scalability in both offline training and online
control.

Approach: We propose two techniques to remedy these challenges. To address the depth
challenge, we propose STL decomposition techniques that can transform a complex specification
with arbitrarily nested temporal operators into a set of reachability and invariance constraints with
minimal temporal nesting. These constraints can then be incrementally satisfied, thus reducing
computational overhead. Our decomposition technique makes no assumption about the underlying
planner and can be applied to long-horizon specifications. To address the breadth challenge, we
propose STLCG++, a masking-based deep learning library for efficient STL evaluation. Our key
insight is to use clever masking mechanisms to evaluate robustness for each timestep in parallel
instead of sequentially processing each timestep as proposed in the prior literature.

Challenge 2: Generality – Expanding Temporal Logic Beyond Explicit States While TL
specifications are a rich formalism for expressing complex behavior, they are traditionally de-
fined over explicit system state variables that can be observed or estimated through sensors (e.g.,
the velocity of a robot). This limits their application for learning-based robotic systems that rely
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on high-dimensional data such as perception sensor data. Perpetual access to these system state
variables is a limiting assumption that often does not hold true in practice. For example, within
navigation domains, sophisticated localization and mapping modules are designed to map high di-
mensional perceptual inputs to state variables [18]. Additionally, when specifications are defined
directly over explicit state variables, designers must manually specify upper and lower bounds for
each predicate (e.g., position x ∈ [xmin,xmax]). Writing these precise numeric ranges can be cum-
bersome and error-prone, as small inaccuracies can yield overly conservative or overly permissive
behaviors [82].

Approach: We propose Embedding Temporal Logic (ETL) that allows formulating formal
specifications with open-ended alphabets by defining predicates over learned representations rather
than explicit states. These learned representations are embedded representations of images and
text that are processed by pretrained modern vision and text transformers such as ViT [26] and
CLIP [20]. By lifting the problem to an embedding space, we leverage pre-trained vector repre-
sentations to overcome the challenge of predefined finite alphabets. In this context, pre-trained
embeddings decouple representation learning from downstream tasks and offer high-quality rep-
resentations without additional training. This allows designers to write these specifications at a
higher level of abstraction by defining specifications in terms of semantic concepts or task-relevant
features, abstracting away low-level state representations. These higher level specifications can
then be used for planning with image goals as is often the case for ImageNav tasks [107]. Ad-
ditionally, this also allows for run-time monitoring of these specifications for learning-enabled
systems without precise state localization.

Challenge 3: Applicability: Enforcing Temporal Constraints in Foundation Models While
Preserving Base Behavior Although temporal logic has seen success in classical robotic planning
for reliable behavior generation, its use for foundation models remains limited. Additionally, re-
training or fine-tuning these large pre-trained models to directly embed temporal logic specifica-
tion is challenging [52]. First, retraining models is a costly endeavor in terms of computational
resources and data requirements. Moreover, due to the stochastic nature of these models, it is
difficult to guarantee strict satisfaction of temporal constraints through training alone. Another
approach to enforcing these constraints is through run-time monitoring [5, 11]. Traditional run-
time enforcement of temporal logic constraints relies on filtering: discarding outputs that violate
a specification. Although effective in some settings, this approach distorts the output distribution
of foundation models (FMs), which are designed to generate coherent, high-probability outputs.
Since these models have been pre-trained on Internet scale data and possess rich semantic informa-
tion, overriding their proposed actions agnostically can lead to degenerate behaviors. Hence, there
is a pressing need for methods that can enforce temporal specifications efficiently at inference time
without disrupting the model’s pre-trained behavior.

Solution: This thesis aims to address this gap by developing inference-time methods for en-
forcing temporal properties for these foundation models, inspired by recent work in constrained
decoding [1,14,94] for large language models. These approaches typically mask out tokens that vi-
olate a syntactic constraint defined over token sequences. For example, regular expressions (regex)
represent a widely used form of syntactic constraint, requiring that generated token sequences

3



October 22, 2025
DRAFT

conform to predefined structural patterns [14, 94]. We extend the constrained decoding paradigm
to enforce STL specifications on candidate action trajectories and propose specification aligned
decoding (SpecDec). Our key insight is that decoding-time interventions can be used not just to fil-
ter unsafe actions, but also to condition the generation process itself on specification satisfaction.
This conditioning is critical because it steers the model toward generating specification-satisfactory
actions rather than relying on post hoc rejection. SpecDec reduces the risk of infeasible outputs
while preserving the original action distribution of the model.

1.2 Thesis

Existing temporal logic frameworks face fundamental challenges in efficiency, generality,
and applicability, which make them difficult to integrate with modern AI-driven planning
systems. This thesis demonstrates that these challenges can be addressed by: (1) More effi-
cient methods for evaluating long-horizon logical specifications through STL decomposition
and STLCG++, (2) A novel specification paradigm defined over image features via Embed-
ding Temporal Logic (ETL), and (3) A technique for enforcing invariant STL specifications
for robot foundation models through constrained decoding.

These challenges arise in three main forms. First, existing temporal logic frameworks face
efficiency limitations: evaluating or planning from deeply nested STL formulas is computationally
expensive, and current formulations scale poorly with trajectory length or horizon of the formula.
In this thesis, efficiency is measured through wall-clock run-time improvements in robustness eval-
uation and planning compared to existing baselines such as MICP and STLCG. Second, they lack
generality, as existing temporal logics operate over explicit, low-dimensional state variables and
cannot naturally express specifications grounded in high-dimensional perceptual representations
such as images or language. Generality is assessed by the ability of ETL to express specifications
directly in the embedding space without requiring explicit state access. Finally, they suffer from
limited applicability in modern AI-driven systems, where enforcing temporal constraints in large
pre-trained foundation models requires either expensive retraining or filtering outputs leading to
reduction in task success rate. Applicability is evaluated by showing that specification-aligned
constrained decoding methods can enforce STL invariants at inference time, without retraining,
while preserving the model’s base success rate.

1.3 List of Contributions

The expected contributions of this thesis include:
1. STL decomposition, which improves the efficiency of specification-driven planning by de-

composing temporal logic specifications.

2. STLCG++, which improves the efficiency of specification-driven planning by enabling scal-
able and parallelizable evaluation of temporal logic specifications.
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Scope Description Est. Time

Must-Have

A technique to decompose STL specifications Completed
An efficient deep learning library for STL evaluation Completed
Constrained decoding for invariant STL specifications Completed
Embedding based temporal logic over image features 4 months

May-Have
Constrained decoding for conditional STL specifications 1 month
Embedding based temporal logic over textual encodings 1 month
Evaluating ETL for real world applications 1 month

Table 1.1: Scope and current progress of this work. Green rows denote completed tasks; red rows
denote ongoing or planned ones.

3. Embedding Temporal Logic (ETL), which extends temporal logic to high-dimensional perception-
based inputs, broadening the applicability of temporal logics for AI-driven planning.

4. Specification Constrained Decoding for RFMs, a post-processing method that enforces STL
constraints in foundation model inference, that generates specification-satisfying actions
without retraining.

Together, these contributions enable more structured, interpretable, and computationally efficient
planning in AI systems, bridging the gap between logic-based planning and data-driven methods.

1.4 Proposed Timeline
Table 1.1 summarizes the planned and completed milestones, where Must-Have are the essential
components that must be delivered in this work and May-Have are the components that I would
potentially deliver. So far, I have completed three Must-Have contributions:

1. STL Decomposition, an approach for decomposing complex specifications.

2. STLCG++, an efficient deep learning library for STL evaluation.

3. Specification Constrained Decoding, for enforcing invariant STL specifications in RFMs.
Next, I will focus on Embedding Temporal Logic (ETL) over image features (4 months),

extending specifications to perception-based inputs. This would address the generality challenge,
as highlighted earlier.

We also propose three stretch goals beyond the primary objectives of this work. The three
May-Have milestones that extend beyond the core milestones are:

1. Conditional constrained decoding extending constrained decoding to enforce conditional
STL specifications for context-aware enforcement.

2. ETL over textual embeddings generalizing ETL for natural language task specifications.

3. Real-world ETL evaluation deploying ETL for runtime monitoring and behavior synthesis
for robotic use cases.
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1.5 Outline
The remainder of the proposal is outlined as follows. Chapter 2 provides important background and
related work about temporal logic and planning used throughout the document. In the following
chapters, I will discuss my proposed solutions that addresses the respective challenges. Chapter
3 investigates a decomposition technique for translating complex long horizon STL specifications
into a set of reachbility and invariance constraints. Chapter 4 investigates a technique for improv-
ing STL robustness evaluation using computational graphs. Chapter 5 discusses a technique for
runtime enforcement of temporal logic requirements in modern robotic foundation models. Chap-
ter 6 discusses proposed design and application of a novel embedding space logic called ETL for
high-level specification and monitoring.
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Chapter 2

Background and Related Work

2.1 Temporal Logics for Robotics
There is a long line of work on specifying and verifying complex behaviors in cyber-physical and
robotic systems using temporal logics. Temporal logics such as linear temporal logic (LTL) [77],
metric temporal logic (MTL) [56], and signal temporal logic (STL) [69] provide a precise way
to encode objectives that are expressed in a natural language. These logics have been used for
trajectory planning [57,62,87], reinforcement learning [2,3,6,104], runtime monitoring [12,103],
and adaptive control [13, 50, 64, 79].

The logics outlined above can struggle with systems that rely on ML for perception, where
input data can have a variable number of objects in frames and evolving bounding boxes. This
has led to spatial extensions of STL and MTL that allow one to specify properties with geometric
interpretations [15, 36]. Specialized logics such as Timed Quality Temporal Logic (TQTL) [25]
and Spatio-Temporal Quality Logic (STQL) [10, 40] have been proposed for perception systems
that permit reasoning about properties over bounding boxes used in object detection. Recently,
Spatiotemporal Perception Logic (STPL) [41] was introduced that combined TQTL with spatial
logic and allows quantification over objects, as well as 2D and 3D spatial reasoning. STPL allows
expressing properties by specifying relations between objects over time. Most of these logics are
grounded in the symbolic outputs of a perception module (object labels, confidences, track IDs).

2.2 Signal Temporal Logic
STL is used specifically to define properties of continuous time real valued signals [69]. A signal
s is a function s : T→ Rn that maps a time domain T ⊆R≥0 to a real valued vector. Then, an STL
formula is defined as:

φ := µ | ¬φ | φ ∧ψ | φ ∨ψ | φ U[a,b] ψ

where µ is a predicate on the signal s at time t in the form of µ ≡ µ(s(t)) > 0 and [a,b] is the
time interval (or simply I). The until operator U defines that φ must be true until ψ becomes true
within a time interval [a,b]. Two other operators can be derived from until: eventually (F[a,b] φ :=
⊤ U[a,b] φ ) and always (G[a,b] φ := ¬F[a,b] ¬φ ).
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Definition 1. Given a signal st representing a signal starting at time t, the Boolean semantics of
satisfaction of st |= φ are defined inductively as follows:

st |= µ ⇐⇒ µ(s(t))> 0
st |= ¬ϕ ⇐⇒ ¬(st |= ϕ)

st |= ϕ1 ∧ϕ2 ⇐⇒ (st |= ϕ1)∧ (st |= ϕ2)

st |= F[a,b](ϕ) ⇐⇒ ∃t ′ ∈ [t +a, t +b] s.t. st ′ |= ϕ

st |= G[a,b](ϕ) ⇐⇒ ∀t ′ ∈ [t +a, t +b] s.t. st ′ |= ϕ

Apart from the Boolean semantics, quantitative semantics are defined for a signal to compute a
real-valued metric indicating robustness, i.e., the strength of satisfaction or violation.
Definition 2. Given a signal st representing a signal starting at time t, the quantitative semantics
of satisfaction of st |= φ are defined inductively as follows:

ρ(st ,µc) = µ(xt)− c
ρ(st ,¬ϕ) =−ρ(st ,ϕ)

ρ(st ,ϕ1 ∧ϕ2) = min(ρ(st ,ϕ1),ρ(st ,ϕ2))

ρ(st ,F[a,b](ϕ)) = max
t ′∈[t+a,t+b]

ρ(s′t ,ϕ)

ρ(st ,G[a,b](ϕ)) = min
t ′∈[t+a,t+b]

ρ(s′t ,ϕ)

For example, suppose that we are given (1) φ ≡ G[0,3](distToR3(t) ≥ 3.0), which states that
the agent should maintain at least 3.0 meters away from region R3 for the next 4 time steps and
(2) signal st that contains sequence ⟨3.0,2.5,3.0,3.5⟩ for distToR3. Evaluting the robustness
of satisfaction of φ over st would result in a value of −0.5, implying that the agent violates the
property by a degree of 0.5 (i.e., it fails to stay away from R3 by 0.5 meters).

2.3 Planning from STL specifications
Planning from STL specifications is an active area of research for which multiple approaches have
been proposed in the past few years [2, 3, 64, 81, 83]. One of the first papers in this direction
involved translating STL specifications into constraints within a Mixed Integer Linear Program
(MILP) [81]. This approach is sound and complete but faces scalability challenges for long-horizon
specifications. To remedy this drawback, the original encoding has been modified by focusing on
abstraction-based techniques [87] and reducing binary variables via logarithmic encoding [58].
Most of these techniques focus on reducing the MILP’s complexity to observe performance bene-
fits. Recently, the focus has shifted to developing techniques that leverage robustness feedback as a
heuristic for trajectory synthesis instead of using MILP. These techniques involve using reinforce-
ment learning [2, 45], search-based techniques [4] and control barrier functions [64] to generate
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Table 2.1: Summary of existing python-based STL toolboxes that are publicly available.

Name AutoDiff Vectorize GPU
STLCG [61] PyTorch ✓ ✓

Argus [9] ✗ ✗ ✗

stlpy [59] ✗ ✗ ✗

PyTeLo [17] ✗ ✗ ✗

pySTL [91] ✗ ✗ ✗

RTAMT [98] ✗ ✗ ✗

STL satisfying trajectories. While these methods offer greater scalability, they are not complete
and frequently struggle to accommodate complex specifications because of the intrinsically non-
convex optimization problem posed by robustness semantics.

To overcome challenges of planning from complex STL specifications, Decomposition of STL
specifications has been studied before in [60,99]. In [99], the authors restrict themselves to an STL
fragment that does not allow nesting of temporal operators. In [60], the authors perform structural
manipulation using a tree structure. However, their focus is on multi-agent setups and they handle
nested operators conservatively, especially for the eventually operator. This conservative notion
generates specification satisfying behavior but it can be overly restrictive.

2.4 STL Evaluation and Monitoring Tools

As STL has been used for various applications, a variety of STL libraries across different program-
ming languages have been developed, including Python, C++, Rust, and Matlab. Given that Python
is commonly used for robotics research, Tab. 2.1 compares recent STL Python packages regarding
automatic differentiation (AD), vectorization, and GPU compatibility. Most libraries offer evalua-
tion capabilities of a single signal, or their design is tailored towards a specific use case, making it
difficult to extend or apply them to new settings. If users want to perform an optimization utilizing
STL robustness formulas, a separate optimization package (e.g., CVXPY [24], Drake [88]) is often
required.

RTAMT [98] was introduced as a unified tool for offline and online STL monitoring with an
efficient C++ backend. It has received widespread support and has superseded other alternatives
in terms of usage. However, RTAMT performs CPU-based signal evaluation and lacks differen-
tiation and vectorization capabilities, limiting its efficiency in handling and optimizing over large
datasets, where AD and GPU compatibility are crucial. STLCG was the first to introduce vector-
ized STL evaluation and backpropagation by leveraging modern AD libraries. However, STLCG
faced scalability challenges due to its underlying recurrent computation.

9
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2.5 Runtime Safety Enforcement for Robotics
Constraint satisfaction for robotics has been an active area of research that involves techniques
such as control barrier functions (CBFs) [7], safe reinforcement learning [33], and temporal logic-
based shielding approaches [5]. Recently, with the advent of vision language action models and
their impressive generalizable capabilities for manipulation, navigation and other tasks, there are
growing concerns about ensuring safety and correctness without retraining these large models.
Although classical methods offer formal guarantees, they either require pretraining/fine-tuning
stage interventions or designing a new classical controller for each safety specification, which
can be restrictive. For example, SafeVLA [102] fine-tunes pre-trained foundation models with
task-specific safety costs, achieving strong performance in Safety-CHORES tasks. However, the
safety specification is expected to be embedded in the training data and loss, meaning the model
cannot generalize to new safety constraints at test time. In contrast, ASIMOV [84] explores rewrit-
ing dangerous instructions with better human-aligned alternatives to steer model behavior without
modifying model parameters, but lacks trajectory-level formal guarantees. Our technique achieves
a middle ground with the ability to adapt to novel specifications at test time without modifying
model parameters while requiring minimal assumptions about the underlying model. The closest
to our work is SELP [95] that proposes LTL-constrained decoding for language model-based plan
generation. However, SELP is unsuitable for STL because its Boolean predicate-based LTL can-
not encode numeric bounds (e.g. ||x–xgoal|| < 0.1m) and does not possess quantitative semantics,
which is crucial for ranking actions. These techniques are also tailored to high-level plans from
LLMs, not to the per-step low-level actions generated online by policies.
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Chapter 3

STL Decomposition for Efficient Planning

Most autonomous robots interacting with the physical world need to achieve complex objectives
while dealing with uncertainty and stochasticity in their environment. This problem is exacer-
bated by short response times expected while ensuring runtime efficiency. Hence, formulating
these complex objectives accurately is a crucial step in realizing the desired behaviors for robotic
operations.

Temporal logics such as LTL and STL provide a precise way to encode objectives that are
expressed in a natural language. STL has received special attention in the community due to its
rich quantitative semantics that can quantitatively measure satisfaction of a given property that en-
codes an objective. Additionally, it can be used to describe complex properties over real valued
signals such as state trajectories arising from continuous dynamical systems. For robotic plan-
ning, STL can be used to describe complex behaviors with concrete time deadlines such as those
found in trajectory planning and task planning. Planners can use these specifications to generate
specification-conforming behavior.

A significant amount of common robotic objectives can be interpreted as a sequence of sub-
tasks. It has been shown that incremental subtask planning can be done more efficiently compared
to planning for a composite task [16, 22, 75]. However, when STL is used to represent these com-
posite tasks, incremental planning becomes challenging. This issue is because STL semantics
can encode the sequential nature of tasks but does not expose this structure to the planner. In such
cases, the planners are forced to work with complex long-horizon specifications. When the horizon
of the specification is longer than the planning horizon, planners can often generate suboptimal or
violating plans. This problem is exacerbated when planning occurs at runtime with computational
constraints and compounding modeling errors [3]. Due to the exacerbation of this problem with
temporal nesting, we term this challenge the ”depth” challenge.

To overcome this challenge, we propose a theory to decompose long-horizon, arbitrarily nested
specifications into sub-specifications that can be satisfied incrementally. We define recursive rules
for decomposition and propose a novel scheduling algorithm for incremental task planning. The
key insight here is to “divide and conquer” STL requirements while ensuring, by construction, that
the resulting plan satisfies the original composite specification. We illustrate the effectiveness of
our proposed approach over an experiment involving robot exploration problems with linear and
non-linear dynamics. Our experiment shows that our approach is able to more efficiently generate
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Figure 3.1: Left: An STL specification φ with multiple nested temporal operators and a possible
decomposition into subtasks. Right: A sample trajectory that satisfies φ in a planar environment.

plans for complex, composite specifications in comparison to the existing state-of-the-art STL-
based planning methods. In addition, our decomposition technique is agnostic to the underlying
system dynamics and the choice of planner, and can potentially be adapted by different planners.

3.1 STLInc

The overview of our planning framework (STLINC) is shown in Figure 3.2. The key idea behind
this approach is that a bounded STL formula in our fragment can be decomposed into a finite set of
the following two types of task constraints, each of which is associated with time interval I = [a,b]
and state proposition p:

Reachability: The system ensures that p holds over at least one time step t within I.
Invariance: The system ensures that p holds over every step t within I.

Based on this idea, the framework carries out the incremental planning process over three steps.
First, the flattener takes a user-specified STL specification (φ ) and decomposes it into two sets of
task constraints, X ∃ and X ∀, which contain the reachability and invariance constraints, respec-
tively. The decomposition is performed such that satisfying all of the constraints in these two sets
implies the satisfaction of the original formula φ .

Next, the scheduler takes the two sets, X ∃ and X ∀, and generates a sequence of atomic
tasks, σ = ⟨at0,at1...atk⟩, where (1) each atomic task at is a non-nested STL formula consisting of
G[a,b](p) or F[a,b](p) (where p is a propositional formula) and (2) two different atomic tasks do not
overlap in their time intervals. After this sequence is generated, the planner executes these atomic
tasks one by one in the designated order. Once all tasks are executed, the system will have fulfilled
X ∃ and X ∀, thus satisfying the original goal of φ .
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Figure 3.2: Overview of the STLINC approach

STL Specification Pattern
φ1 F[0,15](R1)∧F[5,25](R2)∧F[20,30](R3)∧G[0,40](¬O1) R+A
φ2 F[0,15](R1 ∧F[0,15](R2))∧G[0,40](¬O1) SV+A
φ3 F[0,15](R1 ∧F[0,15](R2 ∧F[0,20](R3 ∧F[0,15](R1)))) SV
φ4 F[0,15]G[0,10](R1)∧F[0,35](R2)∧G[0,40](¬O1) R+A+SB
φ5 F[0,15](R1 ∧F[0,20]G[0,10](R2)) SV+SB

Table 3.1: Benchmark STL specifications created from motion planning patterns. Here, R: Reach,
A: Avoid, SV: Sequenced Visit, SB: Stabilization.

3.2 Evaluation

3.2.1 Experimental Setup

Specifications.

We investigated multiple motion planning STL specifications from [19, 74]. Based on the most
common planning patterns, such as Reach (R), Avoid (A), Stabilisation (SB), Sequenced Visits
(SV) etc., we created representative STL benchmark specifications as outlined in Table 3.1. These
specifications are defined over STL subformulas of the form Ri or Oi where Ri / Oi is satisfied
if the agent is inside Region i or Obstacle i. These subformulas are defined in a similar fashion
using conjunction of linear and nonlinear predicates as done in [58]. Please refer to [58] for more
information on how these are defined for rectangular/circular regions.
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Implementation Details.

We investigate planning from benchmark specifications in two robot exploration environments
(similar to Figure 3.1), namely LinEnv and NonLinEnv created using STLPY [58]. STLPY has the
functionality to encode any arbitrary STL formula, dynamics and actuation limits into constraints
and use existing state-of-the-art solvers (Gurobi [34], SNOPT [31], etc.,) to generate satisfying
plans. Our two environments are both planar but differ in underlying dynamics governing the
robot. LinEnv has linear dynamics (Double Integrator) whereas NonLinEnv has nonlinear dynam-
ics (Unicycle). We benchmark our technique against existing MICP methods (for linear dynamics)
and other gradient-based techniques like SNOPT (for non-linear dynamics). We use Python to
implement our tool1 while using stlpy and Drake [89] to encode the STL constraints. Additionally,
we use Gurobi or SNOPT to solve the final constrained optimization problem. All experiments
were run on a workstation with an Intel Xeon W-1350 processor and 32 GB RAM.

Benchmarks and Research Questions.

We compare against the state-of-the-art techniques proposed in [13] (which we call standard
MICP) and [58] (reduced MICP). Since the standard MICP encoding is only defined for envi-
ronments with linear dynamics, we compare our technique against reduced MICP encoding for
NonLinEnv. Reduced MICP claims better performance over standard MICP for long horizon and
complex specifications due to their efficient encoding of disjunction and conjunction with fewer
binary variables. However, standard MICP is faster for short-horizon specifications due to solver-
specific presolve routines that leverage the additional binary variables for simplification.

Since our focus is on both short- and long-horizon specification with deep levels of temporal
operator nesting, we benchmark against both techniques. The two main metrics we are concerned
with are the time taken for solving and the final robustness values. To make the comparison fair, the
total time taken by our technique includes the time taken by the flattener, scheduler, and solvers.

The two main research questions we investigate in this paper are:
1. RQ1: Does our decomposition technique result in shorter solve times?

2. RQ2: Does our decomposition technique result in higher robustness scores?

3.2.2 Results

Table 3.2 summarizes the results for STLINC performance compared to the baselines. In the tables,
N represents the horizon of the specification and D represents the maximum depth of temporal
nesting; TO represents a timeout, which means the solver did not terminate despite running it for
30 minutes. In those cases, the solver’s output plan robustness is represented as -inf (which means
no solution was found in the given time).

For LinEnv for all the specifications, our robustness values are comparable to the two tech-
niques but our solve times are either lower or comparable to the baselines. Additionally, for spec-
ification φ3, which has the deepest temporal nesting, our method significantly outperforms both

1https://github.com/parvkpr/MCTSTL
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Spec N D Solve time (s) Robustness
LinEnv NonLinEnv LinEnv NonLinEnv

[13] [58] STLINC [58] STLINC [13] [58] STLINC [58] STLINC

φ1 40 0 0.845 2.698 0.891 0.890 1.464 0.500 0.500 0.500 0.430 0.572
φ2 30 1 2.459 TO 0.402 12.674 0.892 0.491 -inf 0.491 -inf 0.594
φ3 60 3 TO TO 0.874 15.829 1.554 -inf -inf 0.228 -inf 0.065
φ4 40 1 0.318 0.330 0.629 1.049 1.131 0.494 0.500 0.500 0.470 0.364
φ5 40 2 2.829 28.490 0.694 83.193 1.776 0.500 0.500 0.500 -inf 0.596

Table 3.2: STLINC Performance Benchmarking for LinEnv and NonLinEnv against standard MICP
( [13]) and reduced MICP ( [58]).

baseline methods that experience timeouts.
For NonLinEnv for φ1 and φ4, the baseline encoding performs better in terms of solving time

but STLINC only does slightly worse. However, for specification φ2,φ3 and φ5, STLINC signifi-
cantly outperforms the baselines.

3.3 Summary
STL has been used extensively to describe complex properties over real valued signals such as
state trajectories arising from continuous dynamical systems. For robotic planning, STL can be
used to describe complex behaviors with concrete time deadlines such as those found in trajec-
tory planning and task planning. However, when STL is used to represent these composite tasks,
incremental planning becomes challenging. This issue is because STL semantics can encode the
sequential nature of tasks but does not expose this structure to the planner. In such cases, the plan-
ners are forced to work with complex long-horizon specifications. To overcome this challenge, we
propose a structural manipulation-based technique for the temporal decomposition of STL speci-
fications, enabling the incremental fulfillment of these specifications. We show our method gen-
erates correct-by -construction trajectories that satisfy deeply nested specifications with long time
horizons for which existing baseline STL planning techniques struggle. Our experiments suggest
that our technique is more efficient for multistep tasks with deep temporal nesting, outperforming
baselines by an order of magnitude.
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Chapter 4

STLCG++: Efficient STL Evaluation

STL presents an attractive formalism to describe spatio-temporal specifications as it is designed
to operate over real-valued time-series input rather than discrete propositions. In particular, STL
is equipped with quantitative semantics, or robustness formulas, which measure how well a given
robot trajectory satisfies a requirement. With some smoothing approximations in place, it becomes
efficient and stable to differentiate STL robustness within gradient-based optimization methods—
the key to many robot control and learning applications. As such, we have seen a growing interest
in the inclusion of STL objectives/constraints in various optimization-based robotics problems uti-
lizing gradient descent as a solution method, such as trajectory optimization [32, 76], deep learn-
ing [68, 71], and control synthesis [65, 97]. Recently, STLCG [61] was introduced as a general
framework to encode any STL robustness formula as a computation graph and leveraged mod-
ern automatic differentiation (AD) libraries for evaluation and backpropagation. The STLCG
(PyTorch) library made STL accessible to the broader robotics and deep learning communities,
supporting a growing body of work that relies on gradient-based optimization with STL objec-
tives/constraints [23, 53, 63, 66, 67, 92, 93, 106].

To construct the computation graph for any STL robustness formula, STLCG processes the
time-series input recurrently (see Fig. 4.1 right), primarily inspired by how recurrent neural net-
works (RNNs) [42] process sequential data. While consistent with the semantics of STL robust-
ness, recurrent processing leads to the forward and backward passes being comparatively slower
than other non-recurrent operations—a widely observed drawback of RNNs. These sequential
operations limit STLCG’s capability for efficiently handling long sequence lengths in offline and
online settings, especially when combined with other demanding computations, e.g., running foun-
dation models. We call this challenge the ”breadth” challenge.

To overcome this challenge, we leverage lessons from the language modeling community.
Attention-based neural architectures, such as transformers [90], have demonstrated superior per-
formance in processing sequential data, particularly on GPU hardware. The key to the transformer
architecture is the self-attention operation, which operates on all input values simultaneously rather
than recurrently. Inspired by the masking mechanism in transformer architectures, we present
STLCG++, a masking approach to evaluate and backpropagate through STL robustness for long
sequences more efficiently than STLCG, a recurrent-based approach (see Fig. 4.1 left). Further-
more, STLCG++ enables the differentiability of STL robustness values with respect to time interval
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Figure 4.1: We propose STLCG++ a masking approach to evaluating and backpropagating through
signal temporal logic (STL) robustness formulas. The masking approach offers stronger computa-
tional, theoretical, and practical benefits compared to STLCG, a recurrent approach.

parameters via smooth masking. We provide two open-source STLCG++ libraries, one in JAX and
another in PyTorch, and demonstrate their usage via several robotics-related problems ranging
from unsupervised learning, trajectory planning, and deep generative modeling. STLCG++ opens
new possibilities for using STL requirements in long-sequence contexts, especially for online com-
putations, paving the way for further advancements in spatio-temporal behavior generation, control
synthesis, and analysis for robotics applications.

4.1 Recurrent v/s Masking based Approach

STLCG’s primary performance bottleneck stemmed from it’s use of recurrent operations for com-
puting robustness of temporal operators. Illustrated in Fig. 4.1 (right), STLCG utilizes the concept
of dynamic programming to calculate the robustness trace. The input signal is processed backward
in time, and a hidden state is maintained to store the information necessary for each recurrent op-
eration at each time step. The choice of recurrent operation depends on the temporal STL formula
(either a max or min). The size of the hidden state depends on the time interval of the temporal
operator and is, at most, the length of the signal. Although the use of a hidden state to summarize
past information helps reduce space complexity, the recurrent operation leads to slow evaluation
and backpropagation due to sequential dependencies. In contrast STLCG++employs a masking ap-
proach to compute STL robustness traces. Fig. 4.1 illustrates the masking approach, highlighting
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Table 4.1: Summary of STL specifications used for evaluation inspired by existing literature. I
denotes the time interval over which the temporal operators apply.

Spec Depth Description STL Formula
φ1 0 Invariance F(ϕ ∧ψ)
φ2 1 Stabilization FG(ϕ ∧ψ)
φ3 1 Strict ordering ϕ U ψ

φ4 3 Sequenced visit pattern FI(ϕ4 ∧ψ4 ∧FI(ϕ3 ∧ψ3 ∧FI(ϕ2 ∧ψ2 ∧FI(ϕ ∧ψ))))
φ5 2 Sequenced visit + stabilization FI((ϕ2 ∧ψ2)∧FI(GI(ϕ ∧ψ)))
φ6 0 Reach regions in any order FI(ϕ9 ∧ψ9)∧ . . .∧FI(ϕ0 ∧ψ0)

the idea that each value of a robustness trace is computed simultaneously, rather than sequentially,
as we saw with STLCG. Mirroring the concept of attention masks in transformer architectures [90],
we introduce a mask M to select relevant parts of a signal that can be later processed simultaneously
rather than sequentially.

4.2 Evaluation
We analyze the computational properties of the approaches STLCG++ (masking-based) and STLCG
(recurrent-based) by measuring the computation time required to compute robustness values and
their gradient. We seek to answer the following research questions.
RQ1: Does STLCG++ compute robustness traces faster than STLCG as measured by median com-
putation time?
RQ2: How does STLCG++’s computation time scale with sequence length compared to STLCG?

We perform experiments on CPU and GPU. Since STLCG++ (masking) involves large matrix
computations, we anticipate STLCG++ to scale favorably on a GPU. As STLCG (recurrent) utilizes
a recurrent structure, it scales with sequence length. Tab. 4.1 describes six different STL formulas
with varying complexities [38] that we test on. We evaluate computation time for increasing signal
lengths up to T = 512 time steps with a batch size of 8. We present our results in Fig. 4.2 and
Tab. 4.2 and make the following observations.
CPU backend. We observe that STLCG++ generally achieves lower computation times than
STLCG. The exception is in φ3, where STLCG++ is slower than STLCG for longer sequences.
This is because the space complexity for the Until operation is O(T 3). In Tab. 4.2, we see that
STLCG++ on JAX struggled with φ3 for long sequence lengths, but was fine with PyTorch. We hy-
pothesize that it is due to how JAX allocates memory, especially during just-in-time compilations.
Additionally, both libraries see increasing computation time with sequence length. For STLCG
the computation time increase is expected since the time complexity is O(T ). For STLCG++, the
increased computation time can be explained by the space complexity O(T 2) (except for φ3), and
such computations are not handled as efficiently on a CPU.
GPU backend. STLCG++ outperforms STLCG for all formulas. Additionally, STLCG++ exhibits
essentially constant computation time except for φ3, which has O(T 3) space complexity. From
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Figure 4.2: Comparison of computation time using PyTorch for masking (M, blue) and recurrent
(R, orange) approach on CPU (top row) and GPU (bottom row) as signal length increases, across
six STL formulas. Solid lines denote robustness computation; dashed lines denote gradient evalu-
ation.

Table 4.2: Relative computation time of masking approach compared to recurrent approach. Me-
dian value across different signal lengths. Lower is better.

Device CPU GPU CPU GPU

Formula JAX + JIT PyTorch

φ1 −37.99% −93.43% −76.05% −85.76%
φ2 −51.51% −96.65% −82.50% −89.03%
φ3 822.01% −91.31% −88.22% −94.15%
φ4 −68.22% −96.00% −73.48% −77.91%
φ5 −68.58% −95.32% −67.91% −80.86%
φ6 −72.93% −98.11% −54.14% −84.36%

Tab. 4.2, we see that STLCG++ on GPU provides around 95% and 85% improvement on JAX
and PyTorch, respectively. For STLCG, moving from CPU to GPU gives virtually the same
scaling, with no significant improvement/reduction in computation times.

4.3 Summary
This chapter highlights STLCG++, a masking-based approach for computing STL robustness using
automatic differentiation libraries. STLCG++ mimics the operations that underpin transformer ar-
chitectures, and outperforms the proposed masking approach over STLCG, which uses a recurrent
approach. STLCG++ offers significant computational advantages over STLCG, thus presenting
new and exciting opportunities for incorporating STL specifications into various online robot plan-
ning and control tasks that require fast computation and inference speeds.
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Chapter 5

Constrained Decoding for Foundation
Models

Recent advances in developing large transformer-based models for robotics have enabled general-
purpose policies that map multi-modal inputs such as RGB images, natural language instructions,
and proprioceptive inputs to action sequences [44]. Shortest Path Oracle Clone (SPOC) [27], Po-
liFormer [101], Flare [43] and OpenVLA [54] exhibit impressive generalization in navigation and
manipulation tasks and serve as versatile robot controllers for real-world deployment contexts.
However, these models are primarily data-driven and lack any explicit notion of safety. Although
these models may implicitly exhibit safety-related behaviors depending on the patterns in their
training data, there is no formal guarantee that models will consistently behave safely in all situa-
tions. This serves as a limiting factor for deploying these foundation models in the physical world
where rule compliance and regulatory safety rule adherence are crucial.

Formal specifications have long been used to specify safety requirements for robotic deploy-
ments [29, 73]. Temporal logics (TL) can capture safety constraints on robot behavior, such as
“remain within the permitted region zones and avoid dangerous obstacles”. Although TL has seen
success in classical robotic planning for safety constraint satisfaction, its use for enforcing safety
for large transformer-based robot policies remains limited. Additionally, retraining or fine-tuning
these large pre-trained models to directly embed temporal logic specification is challenging [52].
First, retraining models is a costly endeavor in terms of computational resources and data require-
ments. Moreover, due to the stochastic nature of these models, it is difficult to guarantee strict sat-
isfaction of safety constraints through training alone. Hence, there is a pressing need for methods
that can enforce safety specifications efficiently at inference time without disrupting the model’s
pre-trained behavior.

In the field of natural language processing, syntactic constraints have been successfully en-
forced by applying constrained decoding at inference time [1, 14, 94]. These approaches typically
mask out tokens that violate a syntactic constraint defined over token sequences. For example, reg-
ular expressions (regex) represent a widely used form of syntactic constraint, requiring that gen-
erated token sequences conform to predefined structural patterns [14, 94]. Inspired by this line of
work, we extend the paradigm of constrained decoding to enforce safety constraints over action tra-
jectories in dynamical systems and propose safety specification aligned decoding (SpecDec) for
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transformer based policies that ensures generated action sequences provably satisfy Signal Tempo-
ral Logic (STL) [70] specifications under assumed dynamics. Our key insight is that decoding-time
interventions can be used not just to filter unsafe actions, but to condition the generation process
itself on specification satisfaction. This conditioning is critical because it steers the model to-
ward generating safety specification satisfying actions rather than relying on post hoc rejection.
SpecDec reduces risk of infeasible outputs while preserving the original action distribution of
the model. To enforce such specifications, we leverage the formal semantics of STL to evaluate
candidate actions at runtime and mask those that lead to future violations. Our method is agnostic
to the underlying foundation model, requiring only two properties: (1) access to the decoding-layer
logits during inference, and (2) access to an approximate dynamics model to predict future states.
To efficiently evaluate STL specifications at inference time, we use STLCG++ [51].

5.1 Specification-Guided Constrained Decoding

Constrained Action Decoder 

“Find the plant
In the bedroom”

Transformer based policy (SPOC, Flare)

Safe Actions

Input Image Image 
Tokenizer

Text
Tokenizer

Action TokensSafety spec

Figure 5.1: Overview of our specification aligned decoding framework. Given multimodal inputs
(e.g., RGB images and natural language instructions), a pretrained transformer-based robot policy
(e.g., SPOC) generates candidate actions. These actions are filtered or reweighted by the con-
strained decoding technique based on STL safety constraints. In the figure, green markers denote
target object locations, while red zones represent regions to avoid.

Our proposed constrained decoding framework (SpecDec) for autoregressive transformer-
based robot policies operates at the final output layer. Operating entirely at inference time, SpecDec
intervenes in the action selection process without modifying the model weights or requiring retrain-
ing. The base policy first generates action logits autoregressively from multimodal inputs such as
images, language instructions, and proprioceptive states. A specification monitor then evaluates the
task-specific safety requirements, expressed as STL formulas, over the predicted future trajectories.
These future trajectories are generated using an assumed higher-order dynamics model. Finally,
the constrained decoding layer selects actions that satisfy the STL specification through one of two
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proposed inference-time techniques: Hard Constrained Decoding (HCD), which enforces strict sat-
isfaction by filtering out actions that would violate STL specifications, and Robustness Constrained
Decoding (RCD), which softly adjusts the action distribution using robustness scores to balance
safety and performance. This modular and lightweight design makes SpecDec a plug-and-play
solution for ensuring specification-compliant robot behavior across diverse transformer-based poli-
cies.

5.2 Evaluation

5.2.1 Implementational Details

We comprehensively evaluate our constrained decoding framework on procedurally generated AI2-
THOR [55] indoor scenes with diverse objects and layouts using three state-of-the-art (SOTA) gen-
eralist robot policies: Shortest Path Oracle Clone (SPOC) [27], PoliFormer [101] and Flare [43].
All three are large transformer-based embodied agents trained on extensive language-conditioned
robot trajectory datasets. These models achieve strong zero-shot generalization for a vast variety of
navigation tasks that span open vocabulary object-goal navigation (“find a mug”), room-to-room
traversal (“visit all rooms”), waypoint-based navigation (“move three meters forward and stop near
the red rug”), and attribute-conditioned variants (“locate the chair closest to the refrigerator in the
kitchen”). These models also demonstrate reliable zero-shot transfer to real-world environments,
achieving robust task satisfaction.

In addition, these models capture three different training paradigms for generalist robot poli-
cies. SPOC is trained purely with imitation learning from shortest-path rollouts. Poliformer em-
ploys a hybrid approach that combines reinforcement learning and imitation learning, enabling it
to learn long-horizon structure while retaining expert priors. Flare adopts a large-scale pretrain-
ing plus fine-tuning on embodied navigation data in line with recent foundation model training
paradigms. This diversity in training paradigms allows us to evaluate the applicability of SpecDec
across different learning regimes.

In this work, we address safety specifications for robotics and, therefore, select those most rele-
vant to real-world deployment. In particular, we focus on an important class of safety specifications
called invariants, which are specifications that must be enforced at every reachable state of the
system (e.g., “always avoid an unsafe region”). We enforce geofencing and obstacle avoidance by
encoding them as invariant specifications in STL. Specifically, we generate random regions in the
configuration space that the robot must either avoid (obstacle zones) or remain within (safe zones),
and apply these constraints in real time during execution. The specifications used are: ϕgeofence =

G
(∨N

i=1

(
xL

i ≤ x ≤ xU
i ∧ zL

i ≤ z ≤ zU
i

))
, ϕavoid = G

(∧N
i=1¬

(
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i ∧ zL

i ≤ z ≤ zU
i

))
. The

size of the regions for ϕavoid is 1 m2. For ϕgeo f ence, we randomly pick a subset of rooms in each
house and use each chosen room’s full bounds. These safety specifications are common for robot
learning applications [39, 48, 100, 105]. We encode our test STL specifications using STLCG++
that can evaluate multiple state signals in parallel [51]. This ensures minimal inference overhead
at runtime (10−5 s per timestep) , which is crucial for policy deployment. For our dynamics model,
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φ avoid : STL / SR (% ↑) φ geo f ence: STL / SR (% ↑)

Decoding SPOC Flare PoliFormer SPOC Flare PoliFormer

Unconstrained 72.0 / 82.5 75.5 / 82.0 77.0 / 82.5 78.0 / 81.5 68.0 / 81.0 73.0 / 81.5
Filtering 100.0 / 72.0 100.0 / 78.5 100.0 / 75.5 100.0 / 72.0 100.0 / 66.5 100.0 / 67.5
HCD 100.0 / 72.5 100.0 / 81.0 100.0 / 78.5 100.0 / 76.5 100.0 / 67.5 100.0 / 72.5
RCD 93.0 / 76.0 83.0 / 82.5 87.5 / 83.5 95.5 / 80.0 80.0 / 71.5 85.5 / 77.5

Table 5.1: Comparison by decoding technique across models (SPOC, FLARE, PoliFormer) for
specifications φavoid and φgeo f ence. Each cell reports STL satisfaction / success rate (%). Higher is
better (↑).

we assume a unicycle model, an approximate first-order dynamics abstraction widely used in the
robotics literature for analysis and control [21]. This representation captures the essential kinemat-
ics of motion in the plane and is widely used because it is applicable for diverse robotic platforms.

5.2.2 Experimental setup
We compare our proposed techniques with (1) an unconstrained base model and (2) a base model
with a filtering mechanism. The filtering mechanism picks a default action (turning left or right in
place) upon predicted violation of the safety specification, similar to the Simplex architecture [86].
Simplex architecture is a classic scheme in which a high-performance advanced controller is con-
tinuously monitored by a provably safe but less capable backup controller. Simplex based tech-
niques have been used extensively for safety-critical robotics and are a widely accepted standard
for runtime-safety comparisons. We evaluate performance using two main metrics: STL Satisfac-
tion Rate (STL St), defined as the proportion of trajectories that satisfy the specified STL formula,
and Task Success Rate (SR), which measures standard task success. The three main research
questions we investigated in this paper:

1. RQ1: Do HCD and RCD provide higher STL satisfaction than the unconstrained baselines?

2. RQ2: Do HCD and RCD preserve task success rates comparable to the unconstrained base-
lines?

3. RQ3: Does RCD achieve better task success than HCD while maintaining high STL satis-
faction?

5.2.3 Results
Our results are highlighted in Table 5.1. We also visualize sample trajectories in Figure 5.2 for one
scene and task. Unless stated otherwise, all numbers are averaged over 200 evaluation episodes.

RQ1 – STL satisfaction. Both HCD and RCD consistently improve STL satisfaction relative
to the unconstrained baselines across all models. For φavoid , unconstrained controllers achieve
72-77% satisfaction, while HCD raises this to 100% and RCD achieves 83–93%. For φgeo f ence,
the gap is even larger: unconstrained models reach only 68–78%, whereas HCD attains perfect
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(a) Unconstrained v/s HCD (b) Unconstrained v/s RCD

Figure 5.2: Qualitative comparison of decoded trajectories for a sample scene. Each plot shows a
top down view of an overlay of trajectories starting from the white dot under the instruction “find
an alarm clock”. The unconstrained model passes through two forbidden regions (red squares) on
the way to the target object located on the table. In contrast, HCD (left) and RCD (right) modify
the trajectories to respect STL safety specifications while still reaching the goal.

compliance (100 %) in all cases and RCD achieves 80–95%. We observe that the Simplex-style fil-
tering baseline achieves similar STL-satisfaction rate as HCD, 97 % for φavoid and 100 % φgeo f ence.
This parity is expected as both methods block any action predicted to violate the specification.

RQ2 – Task completion. Simplex-style filtering attains high satisfaction but sacrifices task suc-
cess because the agent takes predefined safe actions. HCD shows similar behavior: although
safety is maximized, success rates are consistently 5–10% lower than the baseline across models
and specifications. However, as HCD factors in base model logits, it is able to achieve higher task
satisfaction compared to Simplex-style filtering. In contrast, RCD preserves success rates much
closer to the unconstrained level. For φavoid , RCD achieves 82–85% success compared to 82–83%
for the unconstrained controllers for Flare and PoliFormer. For φgeo f ence, it maintains 77–80%
compared to 81–82% unconstrained for SPOC and PoliFormer. However, we note that RCD does
not fully recover success in every case: on SPOC with φavoid and Flare with φgeo f ence, task success
remains several points below the unconstrained baseline. Nevertheless, RCD enforces safety while
avoiding the large performance penalty observed with filtering.

RQ3 – RCD vs. HCD. While both HCD and RCD improve safety over the unconstrained base-
line, they differ in how they balance constraint satisfaction with task success. HCD enforces strict

25



October 22, 2025
DRAFT

STL satisfaction that results in frequent conservatism and lower successful task completion rates.
In contrast, RCD’s soft penalization leads to higher task success while still maintaining reason-
able STL satisfaction. These results show that RCD achieves a better trade-off between safety and
goal-directed behavior, especially in settings where occasional low-risk actions can lead to higher
long-term rewards.

Overall, Our proposed techniques effectively enforce safety STL specifications during policy
execution. HCD ensures full compliance, but occasionally sacrifices task success due to strict
truncation. RCD strikes a balance, offering high satisfaction rates and robust performance. This
highlights the feasibility of combining learning-based models with formal safety constraints.

5.3 Summary
In this chapter, we introduce a constrained decoding framework for enforcing safety specifications
for large transformer based robot policies. Our approach enables runtime adaptation to novel safety
specifications without retraining. Through experiments across multiple simulated environments,
we demonstrated that our method significantly improves STL satisfaction while maintaining high
task success rates.
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Chapter 6

ETL: Extending STL Beyond State-Based
Constraints (Proposed Work)

6.1 Motivation
Modern artificial intelligence (AI) technologies, such as foundation models (FMs), are rapidly
merging as a key component in autonomous systems, being used to perform critical functions such
as perception and planning. Techniques for achieving high assurance, such as verification and run-
time monitoring, rely on the availability of formal specifications that capture the desired properties
of a system. However, formally specifying the behavior of an AI-enabled system remains an open
challenge [85].

Formal specifications, especially those written in a temporal logic, are expressed in terms of
propositions about parts of the system state that can be observed or estimated through sensors (e.g.,
the velocity of a robot). For autonomous systems, behavioral properties often refer to interactions
with physical objects (e.g., “the robot should avoid colliding with a table”); to observe these ob-
jects, the system relies on a perception model that operates over a high-dimensional input image. A
formal specification for such a system would require propositions that relate physical objects to the
input image. Here lies the fundamental obstacle to specification: devising a precise, mathematical
encoding of a physical object (e.g., a table) over the high-dimensional input space (e.g., pixels) is
likely to be difficult, if not impossible.

6.2 Proposed Solution
I propose a new approach for formally specifying the behavioral properties of an AI-based system.
The key idea is to introduce embeddings—mathematical representations of real-world objects—
as a first-class concept in a specification notation, and express a property in terms of distances
between a target embedding (an ideal representation of the world for the system to reach or avoid,
given as part of the specification) and an observed embedding (a representation observed and
generated through a sensor during system execution). For example, consider a rescue robot that
is tasked with satisfying the following requirement: “Locate a potential victim while avoiding
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areas with fire.” Such a property would be difficult to specify using an existing specification
language, due to its dependence on perception; even with access to accurate localization, the exact
locations of these real-world objects are often unknown and dynamic. Instead, in an embedding-
based approach, this task may be expressed as “reach the state of the world in which the system
observes an object that closely resembles a potential victim, while avoiding those states where the
observation resembles an area with fire.” Such a specification could then be used, for example, as
part of a run-time monitor or a planner to ensure that the system conforms to the desired property.

As a realization of this approach, we propose Embedding Temporal Logic (ETL), a temporal
logic for specifying the behaviors of AI-based systems. Compared to state-based temporal spec-
ifications (such as LTL), which are evaluated over a sequence of states, an ETL specification is
evaluated over a sequence of embeddings, where each embedding is created from an observation
that the system makes at a particular point in its execution. As counterparts to propositions in LTL,
atomic constructs in ETL are embedding predicates, which impose a constraint over the distance
between a pair of embeddings; e.g., dist(zo,zt) ≤ ε such that dist ∈ MZ , where zt and zo are the
target and observed embeddings in Z , respectively, and ε ∈ M is a given distance threshold in
metric space Z and MZ is the set of all metrics over Z . A target embedding in a predicate is
specified by providing images or text that correspond to a real-world concept (e.g., images or a
textual description of fire). Standard temporal operators (e.g., G,F) are used to construct temporal
properties out of atomic predicates.

Embeddings as a specification mechanism have the potential to significantly broaden the
range of properties that can be specified using a formal specification language, facilitate the
development of new assurance methods, and enable existing methods to be applied to AI-enabled
systems. Additionally, leveraging embeddings for specification allows us to use the power of large,
pretrained FMs [30,78]—which excel at encoding high-level features and concepts into embedding
spaces. Moreover, integrating world models [35] that evolve within these embedding spaces further
enriches our ability to reason about and verify the dynamic behaviors of such systems.

6.3 Evaluation
As highlighted in Chapter 1, first I will define the semantics of ETL over image embeddings
and evaluate it for planning tasks in robotic systems that use an FM for scene understanding and
behavioral prediction. In particular, I propose a planning method that generates actions towards
the goal of satisfying a given ETL specification for diverse robotic tasks.

Then, I will focus on the stretch goal of defining ETL over textual embeddings. These spec-
ifications will allow designers to write task specifications in natural language. Then, I will work
on another stretch goal of ETL defined over textual embeddings for open-ended planning tasks
such as object navigation. Finally I will investigate ETL for runtime monitoring in safety critical
contexts. These contributions are all potential extensions of our ETL defined on image features
and considered a stretch goal beyond the primary objectives of this work.
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Chapter 7

Proposed Contributions

My thesis is expected to make a number of contributions to extending existing temporal logic
frameworks to ensure safety-aware deep learning based planning, including:

1. STLINC [49], a tool for decomposing deeply nested STL specifications for efficient trajec-
tory planning.

2. STLCG++ [50], a tool for efficiently computing and backpropogating through STL robust-
ness using modern autodifferentiation frameworks such as JAX and PyTorch.

3. SpecDec [46] , a lightweight decoding layer that can sit on top of existing robot foundation
models and enforce user-designed STL specifications in a provably safe way.

4. ETL, [47] A new logic specification framework for specifying desired behavior at a higher
level of abstraction such as image features.
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